Urban Water Flow and Water Level Prediction Based on Deep Learning

نویسندگان

  • Haytham Assem
  • Salem Gharbia
  • Gabor Makrai
  • Paul Johnston
  • Laurence W. Gill
  • Francesco Pilla
چکیده

The future planning, management and prediction of water demand and usage should be preceded by long-term variation analysis for related parameters in order to enhance the process of developing new scenarios whether for surface-water or ground-water resources. This paper aims to provide an appropriate methodology for long-term prediction for the water flow and water level parameters of the Shannon river in Ireland over a 30-year period from 1983− 2013 through a framework that is composed of three phases: city wide scale analytics, data fusion, and domain knowledge data analytics phase which is the main focus of the paper that employs a machine learning model based on deep convolutional neural networks (DeepCNNs). We test our proposed deep learning model on three different water stations across the Shannon river and show it out-performs four well-known time-series forecasting models. We finally show how the proposed model simulate the predicted water flow and water level from 2013− 2080. Our proposed solution can be very useful for the water authorities for better planning the future allocation of water resources among competing users such as agriculture, demotic and power stations. In addition, it can be used for capturing abnormalities by setting and comparing thresholds to the predicted water flow and water level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه‌سازی تأثیر احداث سد زیرزمینی روی ذخیره آبخوان و پراکنش نیترات در دشت شهرکرد

Shahrekord aquifer is depleted by almost 800 deep and semi-deep wells, the majority of which are agricultural wells and some have urban usage. In southern parts of the plain, the water table has fallen strongly because of immoderate discharge and decreased the quality of water by urban wastewater. The main objective of this study is investigation of subsurface dam construction and its effects o...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

A Dynamic Simulation of Annular Multiphase Flow during Deep-water Horizontal Well Drilling and the Analysis of Influential Factors

A gas kick simulation model for deep-water horizontal well with diesel-based drilling fluid is presented in this paper. This model is mainly based on the mass, momentum, and energy conservation equations. The unique aspect of this model is the fluid-gas coupling and the change of mud properties after the gas influx from the formation. The simulation results show that the gas in an annulus disso...

متن کامل

Urban Water Quality Prediction Based on Multi-Task Multi-View Learning

Urban water quality is of great importance to our daily lives. Prediction of urban water quality help control water pollution and protect human health. In this work, we forecast the water quality of a station over the next few hours, using a multitask multi-view learning method to fuse multiple datasets from different domains. In particular, our learning model comprises two alignments. The firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017